

ProductVitronectin XF™Primorigen Product NumberS2153-500UGNucleus Biologics Part Number10230

Vial Contents 2 mL, 500 μg protein at 250 μg/mL

Storage Temperature -80 °C

INSTRUCTIONS FOR USE

Components Needed:

- Dilution Buffer: Phosphate Buffered Saline (PBS) 1X with 0.5 mM calcium chloride or CellAdhere™ Dilution Buffer (Stem Cell Technologies #07183)
- Vitronectin XFTM (Part #10230)
- Non-tissue culture treated polystyrene plasticware
- Cell Dissociation Buffer (CRB) such as Versene (Lonza #17-711E)

Coating plasticware with Vitronectin XF™

Should be performed under aseptic conditions in a Biological Safety Cabinet.

Table 1. Recommended volumes for coating

		Wells/dish				Dish/flask size			
	96	24	12	6	60 mm	100 mm	T25	T75	
area per well (cm²)	0.3	2	3.8	9.6	28.3	78.5	25	75	
recommended volume pe	ř								
well (mL)	0.05	0.25	0.50	1.0	3.0	6.0	3.0	5.0	
minimum volume per wel									
(mL) at 78 μL/cm ²	0.02	0.16	0.30	0.75	2.20	6.12	1.95	5.85	

- 1. Thaw the vial of Vitronectin XF™ at room temperature.
- 2. Dilute sufficient amount of Vitronectin XFTM to 10 μg/mL with room temperature Dilution Buffer to cover the desired plasticware (see Table 1 above). Dilutions should be made in a 50 mL polypropylene conical tube.

The required dilution is 1:25, e.g. 240 μ L Vitronectin XFTM diluted into 5.76 mL Dilution Buffer is sufficient for one 6-well plate. Optimal concentration of Vitronectin XFTM may vary depending upon cell type- try 15 and 20 μ g/mL if attachment seems weak. Store remaining undiluted Vitronectin XFTM at 4 °C

- 3. Mix gently (do not vortex).
- 4. Deposit required volume of diluted Vitronectin XF™ in a pool in the center of the well (e.g. 1 mL/well in a 6-well plate). After adding substrate into the desired wells, gently shake the plate horizontally, side to side and forward-backward to spread the coating solution across the entire well or plate surface.
- 5. Incubate minumun of 1 hr to overnight at 37 °C in a humidified CO₂ incubator.

IFU-10230 Rev 01 1

- 6. Before use, remove Vitronectin XF™ solution and quickly rinse once with 1 mL/well (or an equal volume) of Dilution Buffer before addition of medium or cells. Do not allow wells to dehydrate.
- 7. Medium may be added and used immediately or the plate can be held at 37 °C in a CO₂ incubator until addition of the cells.

Converting cells from Matrigel® to growth on Vitronectin XF™

It is essential to prevent proteolysis of cell surface proteins when preparing colonies of pluripotent cells for establishment on Vitronectin XF™ coated plates. The following non-enzymatic steps should be used for colonies growing on Matrigel® or other feeder-free ECM substrates. Suggested volumes are for 6-well plates; adjust as needed.

- 1. Aspirate the medium from hPSC culture, rinse with 1 mL/well CRB and aspirate the well.
- 2. Add 1 mL/well CRB.
- 3. Leave at room temperature for **9 minutes**.
- 4. Gently aspirate CRB.
- 5. Gently detach cell colonies from each well with gentle pipetting of 2 mL/well growth medium, using a 5 glass mL pipette. Take care to minimize the breakup of colony clumps, ensuring that single cells are not generated.
- 6. Dropwise evenly distribute the colony suspension into each well of a prepared Vitronectin XF™ coated 6-well plate at desired split ratio (1:3 to 1:6 split recommended, depending on specific cell line).
- 7. Ensure that each well has at minimum 2 mL/well medium; add additional medium if needed.
- 8. Move the plate in several quick, short, back-and-forth and side-to-side motions to disperse cells across the surface of the wells. Place the plate in a 37 °C incubator.
- 9. Refeed colonies daily and monitor morphology and confluency. Passage when adjacent colonies begin to touch.

Passaging stem cells grown on Vitronectin XF™

The split ratios of 1:3 to 1:6 from Vitronectin XF™ to Vitronectin XF™ have resulted in desireable attachment and confluence rates. It is recommended to use these ratios depending on the confluence of the starting wells. Suggested volumes are for 6-well plate, adjust as needed.

- 1. Aspirate the medium from hPSC culture, rinse with 1 mL/well CRB and aspirate the well.
- 2. Add 1 mL/well CRB.
- 3. Leave at room temperature for **3-4 minutes**.
- 4. Gently aspirate CRB.
- 5. Gently detach cell colonies from each well with gentle pipetting with 2 mL/well growth medium using a 5 glass mL pipette. Take care to minimize the breakup of colony clumps, ensuring that single cells are not generated. Some minimal scraping may be required.
- 6. Dropwise evenly distribute the colony suspension into each well of a prepared Vitronectin XF™ coated 6-well plate at desired split ratio (1:3 to 1:6 split, depending on specific cell line).
- 7. Ensure that each well has at minimum 2 mL/well medium; add additional medium if needed.
- 8. Move the plate in several quick, short, back-and-forth and side-to-side motions to disperse cells across the surface of the wells. Place the plate in a 37 °C incubator.
- 9. Refeed colonies daily and monitor morphology and confluency. Passage when adjacent colonies begin to touch.

IFU-10230 Rev 01 2